

User Guide

IMPORTANT WARNING

THIS MANUAL IS FOR INFORMATION ONLY.

ITS CONTENTS ARE PROVISIONAL AND MAY BE
SUBJECT TO CHANGE PRIOR TO ITS SUPPLY WITH THE
QL COMPUTER.

AS A FULL UP TO DATE MANUAL WILL BE SUPPLIED
WITH EVERY QL COMPUTER WE STRONGLY
RECOMMEND THAT THIS DOCUMENT BE DESTROYED
WHEN IT HAS SERVED ITS PURPOSE.

Sinclair Research Limited
12th January, 1984

DISCLAIMER

In no circumstances will either Sinclair Research Limited or PSION Limited be liable
for any direct, indirect, incidental or consequential damage or loss including but not
limited to loss of use, stored data, profit or contracts which may arise from any error,
defect or failure of the QL hardware or the software supplied with it.

Sinclair Research has a policy of constant development and improvement of their

products. Therefore, the right is reserved to change manuals, hardware, software
and firmware at any time and without notice.

WARNING

To minimise the possibility of a loss of data it is strongly recommended that periodic
copies (or backups) are made of Microdrive cartridges containing data or programs.

© 1984 Sinclair Research Limited
© 1984 PSION Limited

QL

User Guide

Introduction
Beginner's Guide
Reference Guide
Keywords
~ Concepts
Applications Software
QLQuill
QL Abacus
QL Archive
QL Easel

Information

Design and typesetiing by Image Phototypesetting Limited, Stockport, Cheshire.

Printed by: Sharp Blade Limited, Stockport, Cheshire

siciai— |
aL

Introduction

PROVISIONAL

When you unpack your QL you will find:-

The QL User Guide
The QL computer
A power supply

An aerial lead this is about two metres long and has different sockets at
either end.

A network lead this is also about two metres long but has the same type
of connector at each end.

A Microdrive Waliet containing the QL Application Software.

A Microdrive Wallet containing 4 blank Microdrive cartridges.

Three Plastic Feet

On the back and sides of the computer there are a series of connectors. Most of these
are not required initially but are used for plugging other peripherals into the QL (a
peripheral is a piece of equipment which can be plugged into computer to expand its
capabilities)

On the front right hand side you will find two slots, these are the two Microdrives. Always
make sure these two slots do not have any microdrive cartidges in them when the
computer is switched on. Microdrive cartridges are used for storing programs and data
for the QL.. Below each slot there is a small light. When the light is on the Microdrives are
in use and the cartridges should not be removed. There is another light on the front left
hand side, this indicates if the QL is on.

B I LA

microdnve slots

On the right hand edge is another connection which is covered by a plastic strip. This is
used for connecting up to six more Microdrives to the computer if you need to expand
the storage capacity of your QL in the future. ZX Spectrum Microdrives are not suitable
for use in the QL or with QL Microdrives.

oo e I
periphera s

expansion port <<

reset hutton

microdrive expansion port

On the left hand edge of the computer there is a large slot. This is used to add expansion
peripherals to the computer for example more rmemory, sound generators, hard discs,
eles

1. Net 2. Nel 3. Power 4. RGB
Sa WRE 6. SER1 7. SER2 8L @min

Unpacking

A Guided Tour

The Power Supply

The Computer

The Television

PROVISIUNAL

On the back of the computer at the left hand side there is a large slot with a plastic cover,
this is for QL. ZX Spectrum ROM Cartidges are not compatible with the QL.

The back of the computer also contains two sockets for attaching two joysticks, two RS-
232-C serial ports, powet, monitor, TV connections and twoconnectors for the QLAN
Local area network. Teh QLAN is compatible with the Spectrum Network and can be
used to transfer data between the two machines.

To make the computer operational various connections have to be made:

You will notice that the power supply has two leads. one is fitted with a flat three pin
connector and which will later be connected to the QL (we will explain how), The other
end must have a mains plug fitted

Cut off a piece of the covering plastic, about 2cm long at the end of the lead. You will
find two plastic covered wires, one blue and the other brown. Then cut off a piece of the
covering plastic acout bmm fong at the end of each of the wires. Connect the exposed
end of the brown covered wire to the terminal marked L {live) and the exposed end of the
blue wire to the terminal marked N (neutral) There is no wire to be connected to the
terminal marked E (earth).

Retaining 1 Earth
sCTew I F
use

Neutral

Cable grip

Plug the main plug into a suitable mains socket and switch on. Check that there are no
cartridges in the microdrive slots and plug the three pin flat connect from the power
supply into the socket on the back of the computer marked POWER. The QL has no
on/off switch but the computer can effectivly be switched on and off by unplugging this
connector. After some time the area of the case above the Microdrives may become
warm, this is perfectly normal.

The QL is now working but before it can be used you must be able to communicate with
. A television is the simplest method of communicating with your QL. The television
must be UHF. This means that the television must be able to receive BBC2. If the
television is colour then the QL will produce a colour picture. If the television is in black
and white then only a black and white picture will be reproduced, but the QL will perform
fully in every other respect.

Find the UHF socket on the television set (if there is no socket marked but just an aerial
socket use that one). If there is an internal television aerial plugged into the socket,
disconnect it. Now take the aerial lead (this is the one with different sockets at either end
of the lead}. Push one end of the aerial lead into the television UHF socket. The right end
can be found by comparing the lead with the original television aerial cable. Plug the
other end of the lead into the socket marked on the back of the QL.

Plug in the television and switch on. Turn the volume down on the television. You now
need to tune in the television. Choose an unused channel and adjust the tuning control
until you see:

—

PROVISIGNAL

(C) Sinclair Research Ltd 1984

Microdrive Boot?

It you fail to oblinn a picture check first that your television 1sn working order and has
been swilched on Try 1o obtain the normal broadcast stations. If you can receve the
station, hut cannot obtain the Copynght picture, try the computer with another televioion

sel

If you have a monitor and wish to use it instead of a television set you will biave: 1o attach
a sutably wired socket to the end of the monitor cable A cable s available frorn Sinclair
Research but will require winng up to suit your particular type: of monitor. A rnonochrorne:
monitor can be connected using a 3-way or 8-way DIN plug but an RGB rmonitor
requires an 8-way DIN plug; hoth fitinto the socket on the back of the QL rmarked RGB
Information for winng up the monitor lead can be found in the QI Concept Reteience
Section under the heading “‘monitor”’

The question message 'microdrive hoot?”” which appears on the screen s asking if you
want it to continue to load more programmes from a Microdrive Cartridge to be included
in the SuperBasic system - this can be ignored for now. Type “"space’’ and the cormputer
will continue to start up and will display its ‘cursor’ - a flashing coloured square

When the cursor is visible, the computer is ready to accept new commands (or data)
When the cursor 1s not visible, the computer is busy running a programi.

If the machine ever fails to respond correctly or you want to force the program to stop,
then the keys:

should be pressed together and the sytem will return the cursor to the screen. This
sequence of keys is used to prevent accidenta!l use. Should this fail to work, there is a
reset button on the right-hand side of the computer which should be pressed

In future when you start up your QL most of this procedure will not be necessary. You
will notice when first switching on or after resetting a coloured pattern appears on the
screen for a few moments. This is perfectly normal and is only the computer carrying out
a self-test before going on to display the Copynght message.

The QL can be tilted to make typing easier. Three plastic feet are supplied; these can be
inserted into the holes in the rubber feet on the bottom of the computer and fixed by
moving from side to side until they are in position

Getting Started

Use of the Keyboard

Delete

The Cursor

PROVISIONAL

If you are new to computing you should now start working through the QL Beginer's Guide.
If you are familiar with other computers you should read the chapter From BASIC to
SuperBASIC which describes the major differences between the BASICs you may be
familiar with and the BASIC on the QL.. You will find this chapter at the end of the Beginer's
Guide. If you are an expert then reference to the SuperBASIC Reference Guide should be
sufficient. A note on the organisation of this guide can be found at the front of the section.

Please remember that any programs stored in the computer will be lost when the computer
is switched off. Programs can be saved on Microdrive cartridges. Instructions on how to do
this can be found on page of the Reference Guide.

Unlike previous Sinclair computers there is no single keyword entry on the QL. Various keys
however have special meanings, they are:

The ENTER key is used to indicate to the computer that you want it to do something.
Maybe you have typed in a command and want the computer to carry it out, or you may
have typed in some data and want to tell the computer that you have finished and that it
can carry on with its program.

The keyboard has two shift keys: Pressing shift and an alphabetic key will generate the
upper case character. In the case of the other keys, the character engraved on the top part
of the key will be generated, e.g. pressing SHIFT 5 will give %.

The CAPSLOCK key will force the keyboard to always generate upper case characters on
alphabetic keys, but will continue to generate lowercase characters on all other keys unless
the SHIFT key is pressed. CAPSLOCK is switched off by pressing the key again.

CTRL and ALT are used to control the computer, usually their use is combined with an
alphabetic key to indicate a specific command.

Unlike most computer keyboards the QL does not have a DELETE key. The CTRL key
together with the (back arrow) key are pressed together to delete the previous character.

As you type characters the cursor will move along the line showing where the next
character will be displayed. When the cursor is visible and flashing the QL is ready to
accept commands or data, if the computer is busy then the cursor is not visible.

PROVISIONAL Sincl=ir

QL

Beginner's Guide

The Beginner's Guide introduces the complete beginner to the concepts and technigues
required to write complex computer programs. A section is included to illustrate the
special features of SuperBASIC. The final section in the Beginner's Guide may be used by
programmers familiar with other dialects of BASIC to convert to SuperBASIC.

The Beginner's Guide will be available shortly.

SsincCi=ir

QL

Keywords

The Keyword Reference Guide lists all SuperBASIC keywords in alphabetical order A

brief explanation of the keywords function is given followed by lose definition of the syntax
ind examples of usage. An explanation of the syntax definition is given in the Concept

Reference Guide under ““syntax definition’”. Each keyword entry indicates to which, f
iny, group of operations it relates, ie DRAW is a graphics operation and further inforrmation
an be obtained from the graphics section of the Concept Reference Guide

sormetimes (it s necessary 1o deal with more than one keyword at a time, e IF, ELSE,
THEN, END, IF, these are all isted under IF.

An index s provided which atternpts to cover all possible ways you might describe a
Supe'BASIC keyword For example the clear screen command, CLS, 1s also listed under
lear screen’” and “'screen clear”

ABS

PROVISIONAL

math functions

Will return the absolute value of the argument. it will return the argument if the argument
is positive and will return minus the argument if the argument is negative.

syntax: ABS{(numeric-expression)
example: i, ABS(0.5)
i. ABS(-value)

AUTO PROVISIOMA!

AUTO allows line numbers to be generated automatically when entering programs directly
into the computer. Normally programs will be entered via the screen editor. Pressing
escape will terminate automatic line numbering.

syntax: AUTO

example: i AUTO

ROVISIONAL

ATAN and ACOT will compute the arctangent and arccotangent respecitvle y. There
Is not limit to the size of the argument other than the maximum number the machine

ATAN
ACOT

can store.

syntax: ATAN(numeric__expression
ACOT(numeric__expression

example: i ATAN(1)

i. ACOT(36574)

ppuieIgHAL
" Rsosy BAUD

BAUD sets the baud rate for communication via both serial channels. The speed
of the channels cannot be set independently.

syntax: BAUD numeric__expression

The value of the numeric expression must be equal to one of the standard baud rates
supported by the QL.

example: i BAUD 9600
il BAUD print__speed

Supported baud rates are: comment

4%
300
600
1200
2400
4800
™ 9600
19200 (transmit only}

BEEP

syntax:

BEEP

where
duration

pitch
pitch__2
grad__x

grad__y

wraps

fuzy

PROVISIONAL

sound

duration: = numeric__expression range O to 32768
pitch: = numeric__expression range O to 255
wrap. = numeric__expression range 0 t¢ 15
fuzy: = numeric__expression range O to 8

rand: = numeric__expression range 0 to 8
grad__X: = numeric__expression range 0 to 32768
grad__Y. = numeric__expression range O to 8

duration ,pitch__1
, pitch__2 ,grad__x, grad__y
, wiap
, fuzy
, rand

specifies the duration of the sound in units of 20 mS. A duration of
O will run the sound forever or until terminated.

specifies the pitch of the sound in

specifies an upper pitch level between which the sound will ‘bounce’

specify the rate at which the sound will bounce betwee the two specified
pitches

will force the sound to wrap around the specified number of times. If
wrap is less than 15, then it will wrap forever.

will add a random number to the pitch on every cycle of the sound
resulting in a fuzy sound.

PRGVISIONA'

window BLOCK

Fill a block of the specified size and shape, at the specified position relative to the current
window in the specified colour. BLOCK has no effect if the specified block falls outside
the current window. BLOCK uses the pixel coordinate system and wilt draw the block
in the window assigned by the last USE channel statement.

syntax: X__.origin: = numeric__expression
y_..Origin: = numeric__expression
X__Size: = numeric__expression
y__Slze: = numeric__expression

BLOCK channel x__origin, y__origin, x__size, y__size

example: i BLOCK 10, 10, 5, 5, 6, 2
ii. 10 PRINT “‘Bar Chart”
20 LET bottom = 80
30 LET x = 20
40 LET width = 16
50 FOR height = 11, 23, 34, 56, 67, 29, 5, 3
60 LET colour = 3.6*height : REMark pick a colour
70 BLOCK x, bottom-height, width, height, 6
80 BLOCK x+1, bottom-height + 1, width-2, height-1, colour
90 LET x = x + width-1
100 END FOR height

BORDER

comment:

PROVISIT:

screen

Adds a border to the window attached to the default channel or the channel assigned
in the last USE statement.

syntax: border__spec: = numeric__expression range O to x__size/2
BORDER |channel | border |, colour |

Width specifies the thickness of the top and bottom edges of the border. The sides are
twice this width.

example: i BORDER 10, 255 black and white stipple torder
i. 10FORi = 6TO O STEP -1 : BORDER i+2,i
20 BORDER 8

sets consecutive borders and then a
transparent border protect the result

For all subsequent operations except BORDER the window size is reduced to allow space
for the border. If another BORDER command is used then the full size of the window
is used; thus multiple BORDER commands have the effect of changing the size and colour
of a single border. Multiple borders are not created unless specific action is taken.

The colour of the border may be specified in the standard SuperBASIC manner, ie, it
may be a single solid colour or it may be a stipple {see concept colour).

-

PROVISIONA'

devices CAT
CAT will obtain and display the catologue of cartridge in the specified Microdrive.

syntax: CAT expression

The expression must specify a valid Microdrive device

example: ie CAT MDV1
i. CAT “MDV2"

PROVISID::

CHRS$ is a function which will return the character whose value is specified as a parameter.
CHRS$ is the inverse of CODE.

_syntax: CHRS$ (numeric__expression)

. example: i CHR$(27) ASCIl escape character
ii. PRINT CHR$(65) print A

PROVISIS:

graphics , CIRCLE

Draws a circle or an ellipse at a specified angle on the screen at a specified position
and size. CIRCLE uses the graphics coordinates system. The circle will be drawn in the
default window or the window attached to the channel assigned in the last USE statement.

syntax:

= numeric__expression

y:= numeric__expression

radius. = numeric__expression

eccentricity: = numeric__expression range O to 1

angle: = numeric expression range 0 to 2 {pi symbol)

CIRCLE x__position, y._position, radius, | eccentricity, angle |

X horizontal offset from the graphics origin

y vertical offset from the graphics origin

radius radius of the circle

eccentricity the ratio between the major and minor axis of an ellipse. eccentricity

of 1 is a circle O; is a straight iine.

angle the orientation of the major axis of the ellipse relative to the screen
vertical. The angle must be specified in radians

If eccentricity and angle are not specified then CIRCLE will default to drawing a circle. ~ comment

PROVISIONAL

CLEAR

CLEAR will clear out the variable area.
syntax: CLEAR

example: i. CLEAR

comment: RUN will do an automatic CLEAR before starting the program

—

CLOSE will flush all buffers related to the specified channel and will then close it. Any

window associated with the channel will be deactivated.

syntax: channel: = 4 numeric__expression range O to 16
CLOSE channel

No action will be taken if an attempt is made to clode and unopened channel

example: i CLOSE 4
i. CLOSE input__channel

CLOSE

PROVISIONA!
i screen

Will clear the current window to the current PAPER colour, excluding the border if one
has been specified. CLS will accept an optional parameter which will specify if only part
of the current window must be cleared.

syntax: part: = numeric__expression

where: 0 - whole screen (default if no parameter)
1 - top excluding the cursor line
2 - bottom excluding the cursor line
3 - whole of the cursor line
4 - right end of cursor line including the cursor position

CLS part

example: is €LS
it CLS8

PROVISIY

SuperBASIC

CODE is a function which returns the internal code used to represent the character which
is supplied as a parameter. CODE is the inverse of CHR$

CODE

syntax: CODE (string__expression)

example: i. PRINT CODE(A) prints 65

PROVISIONA!

SuperBASIC CONTINUE

CONTINUE allows a program which has been broken into to be continued.
syntax: CONTINUE

example: i. CONTINUE

COPY

PROVISIONAL

devices

COPY will copy data from a channel or device to another channel or device until and
end of file marker is detected or a timeout occurs. If the destination specification is
ommitted (ie TO device) then the console device is assumed.

syntax: COPY device | TO device |

It must be possible to input from the source device and it must be possible to output
to the destination device.

example: jx COPY MDV1__data__file copy to default window
i COPY NET3 TO MDV1__data copy data from network
station to MDV__data.

PROVISIONAL

maths functions

COS

COS will compute the cosine of the specified argument. The argument must be in the
range -60000 to + 60000 and must be specified in radians.

syntax: COS(numeric__expression) range -60000 to 60000

example: ik
ii. COS(3.141592654/2)

coTt

PROVISIOHAL

math functions

COT will compute the cotangent of the specified argumerit. The argument must be in
the range -30000 to 30000 and must be specified in radians.

syntax: COT{numeric__expression} range -30000 to 30000
example: i. COT(3)

ii. COT{3.1415 92654/2)

PROVISIONA!

Screen

Sets the character size. The standard size is 0,0 in 512 mode and 2,0 in 256 mode.

syntax: width: = numeric__expression range 0 to 3
height: = numeric__expression range O to 1

CSIZE width, height

B T

JIIITIT
ISASEEAS
H HH l
H HH

-

fnaue
Tt
0 08
1

nl
spaal

[eeas
lo

Width defines the horizontal size of the character space. Height defines the vertical size
of the character space. The character size is adjusted to fill the space available.

width size height size
0 6 pixels 0 10 pixels
1 8 pixels 1 20 pixels
2 12 pixels
8 16 pixels
example: i. CSIZE 3,0
i. CSIZE 3

iii. 10 FOR height = 0 TO 1
20 FOR width = 0 TO 3
30 CSIZE width, height
40 PRINT ‘‘Testing...”
50 END FOR width
60 END FOR height

CSIZE

CURSOR

comment:

pRﬂ\II(‘!N! Y
viviyin:

window
CURSOR allows the screen cursor to be positioned anywhere in the current window.
The positioning uses the pixel coordinate system. The origin is the relative 1o the current
window origin.

syntax: CURSOR channel x__position, y.__position

example: i. CURSOR 0,0
ii. CURSOR 20,30

Specifying a channel for CURSOR will affect the cursor position in window linked to
the specified channel.

PROVISIDAAL

SuperBASIC

DATA allows data to be defined within a program. The data can be read by a subsequent
READ statement is ignored by SuperBASIC when it is encountered during normal

processing.
syntax: DATA * | expression, | *
examiple: i. DATA “"Monday’’, '‘Tuesday’’, ‘‘Wednesday’’

i. DATA 1, “JAN", 2, "FEB”, 3, “MAR"

READ reads data contained in DATA statements and assignes it to variables. Data is
first read from the first item in the first DATA statement encountered in the program.
Subsequent READS read from subsequent items in the DATA statement and then from
subsequent DATA statements. An error is reported if a READ I1s attempted for which
there is no data. The RESTORE command may be used to set the line from which data

will be read to any line in the program.

syntax: READ * | identifier, | *

example: [1(0)
20
30
40
50
60
70

i. 10
20
30
40
50

DiMension days$(7,4)
FOR count = 1 TO 10
READ days$(count)
PRINT DAYS$(count)
END FOR count
DATA ""MON*, “TUE", "WED", “THUR", "FRI"
DATA ““SAT'", ““SUN"

FOR count = 1 TO 12 : READ month${count)
DATA ““January’’, “’February’’, “‘March’’
DATA “April”’, "May’’, "“June’’

DATA ““July”’, ““August’’, '‘September’
DATA “‘October’’, ‘"November’’, ‘‘December’’

DATA

READ

DATES$

PROVISIONAL

clock

DATE will return the date and time contained in the computers real time clock. The clock
has battery back-up and normally will not require setting.

The format of the string returned by DATE$ is:

"‘dd-mm-yy hh:mm:ss”’

where dd is the day
mm is the month
yy Is the year

hh is the hour
mm are the minutes
ss are the seconds

syntax: DATES

example: i. PRINT DATES$
ii. PRINT DATES$(10 TO

1 to 28, 29, 30, 31
il t® 12
84, 85, etc

0 to 23
0 to 59
0 to 59

PROVISIONAL

define:

long:

short:

functions and procedures

Defines a SuperBASIC function. The function must be associated with a standard identifier
and the formal parameters specified. Both formal parameters as well as those defined
in LOCAL statement, have no effect on similarly named identifiers outside the function.

When a function is defined the type of the formal parameters need not be specified.
SuperBASIC will determine a type when the function is activated.

An answer is returned from a function by appending an expression to the RETURN
statement or by assigning a value to the name of the function.

The type of data returned by the function is indicated by the terminating character of
the function identifier.

parameters: = (expression * |, expression | *)

This form allows muilti-line functions to be defined

syntax: DEF FUNCTION | FN | identifier | pararneters |
LOCAL identifier * |, identifier | *
statements
| RETURN expression | |
END DEF

LOCAL and RETURN can be at any position within the procedure body
example: 10 DEFine FuNction mean(a, b, c)

20 LOCAL answer

30 LET answer = {a + b + ¢)/3

40 RETURN answer

50 END DEFine

60 PRINT mean(1,2,3)

The short form of the DEFine FuNction command is included to aflow compatibility
between SuperBASIC and other forms of BASIC.

syntax: DEF FN identifier | parameters = expression
The expression is expressed in terms of the supplied parameters

example: DEFine FuNction round__up number = INT(number + 0.5)
PRINT round__up 3.45

DEFine FuNction
END DEFine

DEFine PROCEDURE
END DEFine

comment:

pDAVICINMNAL

f AR 9 PP W s T

functions and procedures

Defines a SuperBASIC procedure. The sequence of statements between the DEFine
PROCedure statement and the END DEFine statement constitutes the procedure. The
procedure definition must also include a list of formal parameters which the procedure
1s 1o use. The formal parameters must be enclosed in brackets for the definition, but
brackets are not nexessary when the procedure is called. Variables may be defined to
be LOCAL to the procedure. Formal parameters and locally defined vanables have no
effect on similarly defined variables outside the procedure.

The procedure is called by entering its name as the first item in a SuperBASIC statement
It is possible to regard a procedure definition as a command definition in SuperBASIC;
many of the system commands are themselves defined as procedures.

syntax: parameters: = expression * 1, expression | *

DEFine PROCedure identifier(parameters)
LOCAL identifier * |, identifier | *
statements
RETURN

END DEFine

LOCAL and RETURN can appear at any position within the procedure body

example: i 10 DEFine PROCedure start__screen
20 WINDOW 0,0,100,100
30 BORDER 4,255
40 PRINT ""Hello Everybody'’
50 END DEFine

il 10 DEFine PROCedure stow___scroll{scroll_limit)
20 LOCAL count
30 FOR count = 1 TO scroll__limit
40 SCROLL 1
50 END FOR count
60 END DEFine

The parameters for a procedure must be enclosed in brackets for the definition. If the
procedure has no parameters then it 1s not necessary to specify an empty set of brackets.

PROVISIONAL

devices DELETE

DELETE will remove a file from the catologue of the cartridges in the specified
Microdrive.

syntax: DELETE device
The device specification must be a Microdrive device

example: i. DELETE MDV1__old__data
ii. DELETE MDV1__letter__file

DIMension

PROVISIANAL

 ena L Garays
Defines an array in to SupcrBASIC . String, integer and floating point arrays can be defined.
String arrays handle fixed length strings and the final dimension is taken to be the string

length

Array indices run from O up (o ithe maximium mdex specified in the DIMension statetment;
thus DIMension will generate an array with one more element in each dimension than
is actually specified. When an array is specified 1t 1s initialised to zero for a numeric array
and zero length strings for a string array.

syntax: aimension: = NUMEric__expression
array__spec: — indentifier{dimension * |, dimension | *)

DiMension array__ * |, array__ | *

example: i. DIMension string_ _array$(10,10,50}
ii. DIMension matrix(100,100)

PROVISIT:
graphics DRAW

DRAW will draw a line from the current graphics position to the specified position turning

it through an optional angle. The point specifictation may be repeated to aliow muiltiple
lines to be drawn with a single call to DRAW.

DRAW uses the graphics coordinate system.

syntax: point: = x__position, y__position , angle
DRAW point * TO point *
example: i. DRAW 10,50

ii. PLOT 0,0 : DRAW 0,0.5 TO 0.5,0.5

PROVISIJNAL

EDIT editing

The EDIT command enters the QL screen editor and allows screen editing and tine syntax
checking to be performed.

The editor is entered by typing:
EDIT line__number

the optional line number will specify an intial line for the edit line, if it is omitted then
the initial edit line will be the first line.

When a change is made to a line the line will be highlighted to indicate that it is not
necessarily correct. When an attempt is made to move off the line, the complete line
is checked for syntax errors. If no errors are detected then the edit cursor is moved.
if syntax errors are detected then the edit cursor is not allowed to move off the line.

The edit cursor is moved to the line which requires editing. The screen will be scrolied
up or down to keep the edit line visible. Changes can be made to a line either by inserting
text or by changing text. In insert mode space is made for any new characters by scroling
the line sideways. The line will wrap around if necessary. In change mode characters
in the edit line are replaced by characters typed in from the keyboard and the edit cursor
is moved one character position to the right. Change mode and insert mode are switched
between by typing ALT.

The edit cursor can be repositioned within the edit line with the cursor keys. Characters
to the left and right of the edit cursor can be deleted by pressing the left and right cursor
key in conjunction with the CTRL key.

Pressing ENTER will “enter’ a blank line into the edit window and allows new lines to
be added.

Pressing ESCAPE during a line edit at any time will restore the original unedited line.
Pressing ESCAPE at any other line will exit the editor

PROVISION |
multitasking EXEC

EXEC will load a sequence of programs and execute them in parallel. Communication
‘pipes” will be automatically set up between each program so allowing each program
to communicate with the others. For each program a series of devices can be specified
which will opened for the program before execution starts. The command interpreter
will be restarted after the programs have started execution.

syntax: io__device: = device use to specify /0 mapping for the program

program: = device used to specify a Microdrive file containing the
program

seperator: = | |
process: = program *|, io__device |*
EXEC process *| seperator process I

The ! is used to separate individual processes in the command line and indicates that
a communication pipe is to be set up between the processes.

example: i. EXEC MDV1__communications | MDV1__current__job

multitasking

EXEC__N is the same as EXEC except that the system will wait for the last program EXEC__N
to terminate before the command interpreter is restarted.

example: i. EXEC MDV1__accounts, data | MDV1__printer__process

EXIT

D

|

EXIT will continue processing at the END of the named repeat structure.

syntax:

example:

EXIT identifier

10 REMark start looping

20 LET count = O

30 REPeat loop

40 LET count = count + 1

50 PRINT count

60 IF count = 20 THEN EXIT loop
70 END REPeat loop

10 REPeat outer__loop

20 FORn = 1 TO 1000

30 REM program statements

40 REM program statements

50 IF RND =.5 THEN EXIT outer__loop
60 END FOR n

70 END REPeat outer__loop

ie]
11
repetit

ey

10

!
n

Al

viy

-

PROVISIONAL

math functions EXP

EXP vuili return the vaiue of e raised to the power of the argument The argument must
be in the range -b00 to 500 otherwise overflow will occur.

syntax: EXP(numeric__expression) range 500 to 500

example: i. EXP(3)
ii. EXP{3.141592654)

FLASH

comment:

PROVISIONA:

screen

This turns the flash state on and off.
syntax: FLASH numeric__expression range 0 to 1

where: O will turn the flash oft
1 will turn the flash on

example: i 10 PRINT A",
20 FLASH 1
30 PRINT “’flashing’’;
40 FLASH O
50 PRINT ““word"’

FLASH operates i1 256 mode only (low resolution)

define:

short:

long:

comment:

warning:

PROVISIONAY

repetition

The FOR statement allows a group of SuperBASIC statements to be repeated a controlled
number of times. The FOR statement can be used in both a long and a short form.

NEXT and END FOR can be used together within the same FOR loop to provide a loop
epilogue. A loop epilogue is a group of SuperBASIC statements which will NOT be
executed if a loop 1s exited via an EXIT statement. EXIT statement.

for__item: = | numeric__exp
| numeric__exp TO numeric_exp
| numeric_exp TO numeric__exp STEP numeric__exp

for__list: = for__item * 1, for__item | *

The FOR statement is followed on the same logical line by a sequence of SuperBASIC
statements. The sequence of statements is then repeatedly executed under the control
of the FOR statement. When the FOR statement is exhausted, processing continues
on the next line. The FOR statement does not require its terminating NEXT or END FOR.

syntax: FOR identifer = for__list : statement *|: statement *

example: i. FORi =1,2,3,4,2T0 7 STEP 2 : PRINT i
ii. FOR element = first TO last : LET buffer(element} = O

The FOR statement is the last statement on the line. Subsequent lines then contain a
series of SuperBASIC statements terminated by an END FOR statement. The statements
enclosed between the FOR statement and the END FOR are process under the control
of the FOR statement.

syntax: FOR identifer = for__list
Statements
END FOR identifer

example: i5 10 FOR value = data TO 1 STEP -1
20 LET factorial = factorial * value
30 PRINT value, factorial
40 END FOR value

ii. 10 FOR element = 1 TO length
20 IF data (element) O THEN EXIT element
30 LET data (element) = root(datalelement))
40 NEXT element
50 PRINT ‘‘Operation completed’
60 END FOR element

For a simple FOR statement the END FOR and NEXT may be used interchangably.

Currently the for loop identifer must define a floating point control variable this restriction
will lifted

FOR END FOR

PROVISIONAL

FORMAT Microdrives

FORMAT will format and make ready for use the cartridge contained in the specified

Microdrive.
syntax: FORMAT __device
Device specifies the Microdrive to be used for tormatting and the dentifier part of the

specification is used as the median or volurnc name for that cartridge

example: i. FORMAT MDV1__data__cartridge
ii. FORMAT MDV2__wp__letters

warning: FORMAT can be used to reinitialisc a used cartridge, howuever, all data contained on
that cartridge will be lost

PROVISIONAL

compatibility

For compatibility with other BASICs, SuperBASIC supports the GOTO statement. GOTO
will unconditionally transfer processing to the statement number specified. The statement
number specification can be an expression.

syntax: GOTO expression
example: i. GOTO program__start
ii. GOTO 9999

The control structures available in SuperBASIC make the GOTO statement redundant.

- GOTO

comment

PROVISI{]NA’

GOSuB compatibility

For compatibility with other BASICs, SuperBASIC supports the GOSUB statement.
GOSUB transfers processing to the specified line number; a RETURN statement will
transfer processing back to the statement following GOSUB.

The line number specification can be an expression.

syntax: GOSUB expression

example i. GOSUB 100
ii. GOSUB 4 *select__variable

comment: The control structures available in SuperBASIC make the GOSUB statement redundant.

PROVISIONAL

The IF statement allows conditions to be tested and the outcome of that test to control
subsequent program flow.

The IF statement can be used in three forms.

The THEN keyword is followed on the same logical line by a sequence of SuperBASIC
statements. These statements are executed if the expression contained in the IF statement
evaluates 1o be non zero.

syntax: IF expression THEN statement * | . statement | *

example: i. IFa = 32 THEN PRINT “'Limit reached"’
ii. IF test_data maximum THEN LET maximum = test _data
iii. IF a THEN PRINT “a is not zero’’

The THEN keyword is the last item on the logical line. A seqguence of SuperBASIC
statements is written following the IF statements. The sequence is terminated by the
END IF statement. The sequence of SuperBASIC statements is executed If the expression
contained in the IF statement evaluates to 1.

syntax: IF expression THEN
statements
END IF
example: i 10 IF number limit THEN

20 LET error__count = error__count + 1

30 PRINT “Number out of range’’

40 END IF
The THEN keyword is the last entry on the logical line. A sequence of SuperBASIC
statements follows on subsequent lines, terminated by the ELSE keyword. If the expression
contained in the IF statement evaluates to be non zero then this first sequence of
SuperBASIC statements is processed. After the ELSE keyword a second sequence of
SuperBASIC statements is entered, terminated by the END IF keyword. If the expression
evaluated by the IF statement is not equal to 1 then this second sequence of SuperBASIC
statements is processed.

syntax: IF expression THEN
Statements
ELSE
Statements
END IF

example: it 10 IF number limit THEN
20 PRINT ‘“Range error”’
30 ELSE
40 PRINT “Inside limit"’
50 ENDIF

In all three forms of the IF statement the THEN is optional. In the short form it may
be replaced by a colon to distinguish the end of the IF and the start of the next statement.
In the two long forms it can be removed completely.

{F statements may be nested as deep as the user requires (subject to available memory).
However, confusion may arise as to which ELSE, END IF eic matches which IF.
SuperBASIC will match nested ELSE statements etc to the closest IF statement, for
example:

10 IF a = b THEN
20 Fc = d THEN

30 PRINT “‘error’’
40 ELSE

50 PRINT ““no error”’
60 END IF

70 END IF

The ELSE is matched to the second IF

IF
THEN
ELSE
END IF

short

long 1

long 2

comment

nesting

PROVISIONA.

This sets the current ink colour, ie, the colour which output is written in.

INK

syntax: INK colour
example: i. INK5
ii. INK 6,2

comment: The INK colour can be a stipple (see colour)

PROVISINNA!

REPEAT allows general repeat loops to be constructed. REPEAT must be used with
EXIT for maximum effect. REPEAT can be used in both long and short forms.

repetition

The REPEAT keyword and loop identifer are followed on same logical line by a colon
and a sequence of SuperBASIC statements. EXIT will resume normal processing at the
next logical line.

syntax: REPeat identifier . statements
example: REPeat wait : IF inkey$ “** THEN EXIT wait

The REPEAT keyword and the loop identifier are the only statements on the logical line.
Subsequent lines contain a series of SuperBASIC statements terminated by an END
REPEAT statement.

The statements between the REPEAT and the END REPEAT are repeatedly processed
by SuperBASIC.

syntax: REPeat identifier
statements
END REPeat identifier

example: i 50 REPeat guess
60 INPUT “What is your guess?’’, guess
70 IF guess = number THEN

80 PRINT ““You have guessed correctly’’
90 EXIT guess
100 ELSE
120 PRINT ““You have guessed incorrectly’’
130 ENDIF

140 END REPeat guess

Normally at least one statement in REPeat loop will be an EXIT statement

REPeat
END REPeat

short

long

comment

RND

PR['_H?M o

SuperBASIC

RND generates a random number. Up to two parameters may be specified for RND.
it no parameters are specified then RND returns a pseudo random floating point number
In the range O to 1. If a single parameter is specified then RND returns an integer in
the range O to the specified parameter. If two parameters are specified then RND returns
an integer in the range specified by the two parameters.

syntax: RND | numeric__expression | | , numeric___expression |
example: i PRINT RND

i. PRINT RND 10,20

ii. PRINT RND 1,6

iv. PRINT RND 10

PROVISIONAL

Allows explanatory text to be inserted into a program. The remainder of the line is ignored
by SuperBASIC

documentation

REMark

syntax: REMark text

example: i. REM This is a comment in a program

RESTORE

comment:

PROVISIONAL

SuperBASIC

RESTORES allows the data pointer, ie. the position from which subsequent READS will
read their data. If RESTORE is followed by a parameter then the data pointer is set to
that value. If no parameter is specified then the data pointer is reset to the start of the

program.

syntax:

example:

syntax:

example:

line: = integer__expression range 1 to 32768
RESTORE line

i. RESTORE
ii. RESTORE 999

functions and procedures
RETURN

RETURN is used to force a funcion or a procedure to terminate and
resume processing at the statement after the procedure or function
call. When used in a function the RETURN statement can also be
used to return the functions value

RETURN expression
i 10 DEFine FuNction sinh x

20 IF ABS x 8 accuracy__limit THEN
30 RETURN EXP(x-LN 2)

40 ELSE
50 RETURN (exp{x) - exp{x)}/2
60 END IF

70 END DEFine

ii. 10 DEFine PROCedure warning n
20 REM print a warning message

30 IF warning__flag THEN

40 PRINT “WARNING:";

50 SELect ON n

60 ONn =1

76 PRINT "“Microdrive almost full’”’
86 ONn =2

98 PRINT ""Data space almost full’”
100 ON n = REMAINDER
110 PRINT “'Program error’’

120 END SElLect

130 ELSE

140 RETURN

150 END IF

160 END DEFine

It 1s not compulsory to have a RETURN in a procedure. If processing reaches the END
DEFine of a procedure then the procedure will return automatically.

It is not compulsory to have a RETURN in a function. A function can be terminated by
assigning a value to the name of the function, see FuNction

PROVISIONAL

Allows output to be sent to a channel. The normal use of PRINT is to send data to the
QL screen.

PRINT

syntax: print_sep:= | !
.
l
ks
channel: = numeric__expression range 0 to 16
print__item: = | expression
| channel
| print__separator
print__list: = | print__sep|print__item | print__sep |

PRINT * |print__item | *

Multiple print separators are allowed. At least one separator must sepaiate channel
specifications and expression.

example: i. PRINT ““Hello World"’ will output Hello World on the
default output device (screen)
i. PRINT 5, ““data’’, 1,2,3,4 will output the supplied data to
channel 5 (which must have been
previously opened)

| Best viewed as an intelligent space. Its normal action is to insert a space separator
between items output on the screen_ If the item will not fit on the current
line a line feed will be generated. If the current print position is at the
start of a line then a space will not be output

, Normal seperator, SuperBASIC will make attempt lo separate the two
items printed in a sensible way. {comma)

Will force a new line (apostrophe)

; Will cancel all SuperBASIC attempts to layout the two items.

If no channel specification is given iside the PRINT statement the print output will be comment
sent to the default channel or the channel assigned by the last USE statement. If a channel

is specified in the PRINT statement then subsequent print output be sent to that channel

until the end of the PRINT statement or another channel specification is found.

-~ PRUVISIGNAL ..

RANDOM allows the random number generator to be reseeded. if a parameter is specified
the parameter is taken to be the new seed. If no parameter is specified then the generator
is reseeded from internal information.

syntax: RANDOM numeric__expression

example: i. RANDOM
ii. RANDOM 3.2235

PROVISIONAL

graphics PLOT

PLOT a point at the specified position relative to the graphics origin for the current window.
Points are positioned by PLOT relative to the graphics origin.

syntax: x__coordinate: = numeric__expression
y__coordinate: = nureric__expression

PLOT x__coordimate, y__coordinate

example: i. PLOT 256,128
ii. PLOT x, x*x

POKE

PROVISIONAL

T SUperBASIC

POKE allows a memory location to be changed. An optional parameter can be

specified to indicate if a byte or a word access is required. No optional parameter
indicates that a byte access is required.

syntax: address: = numeric___expression
data: = numeric__expression
word: = numeric__expression range O to 1
where: O indicates that POKE is to pertorm a byte access (8 bit)

1 indicates that POKE is to perform a word access (16 bit)
POKE address, data , word

example: i. POKE 12235, O
ii. POKE 12345, 32768, 1

PROVISIONAL

midtitasking

PAUSE

PAUSE will cause a program to wail a specified period of tme. Delays are specified
m units of 20ims

syntax: PAUSE numieric__expression

example: i. PAUSE 20
i. PAUSE 100

PEEK

PROS:SIONAL

uperBASIC

PEEK is a function which returns the contents of the specified memory location. AN
optional parareter can be specified to indicate if a byte or a word access is required.

syntax: address: = numeric__expression
word: = numeric__expression range 0 to 1
where: 0 indicates that PEEK is to perform a byte access (8 bit)

1 indicates that PEEK is to perform a word access (16 bit)
PEEK (address |, word |)

example: i. PEEK 12245
ii. PEEK 12,1

PROVISIONAL PAPER

PAPER set a new paper colour (the paper colour will be used by CLS, PAN, SCROLL, Screen
etc). The sclected paper colour remains in effect until the next use of PAPER.

syntax: PAPER colour
example: i PAPER 7
i PAPER 7, 2

iii. 10 REMark Show all colours and stipples
20FORi =0TO 7
30 FORj=0TO7
40 FORk = 0 TO 3
50 PAPER i,j,k
60 SCROLL 6
70 END FOR k
80 END FOR j
90 END FOR i

PAPER will also set the STRIP colour warning

PAN

PROVISIONAL

screen

PAN the entire current window the specified number of pixels to the left or the right
Paper is scrolled in to fill the clear area. An optional second parameter can be specified
which will allow a part of the screen to be panned.

syntax: part. — numeric explession

where:
0 whole screen (default in no paraineter)
3 - whole of the cursor line
4 - right end of cursor line including the cursor position

PAN numeric__expression , part

If the expression evaluates to a POSITIVE value then the scicen will be panned to the
LEFT, otherwise it will be panned to the nght. ({{ink positive and LEFT with highlight)

example: i. PAN 50 pan left 50 pixels
. PAN -100 pan right 100 pixels
ii. PAN 50,3 pan the whole of the current cursor line

50 pixels to the left

PROVISIONAL

Allows the user to open a channel for 1/O.

files

syntax: channel: = 4k numeric__expression range 0 to 16
device: = see concepl device
OPEN channel, device

example: i. #OPEN 5, f_name$
ii. # OPEN 15, “file__name"’

iii. # OPEN 7, MDV1__data _ file
iv.# OPEN 6, CON__10X20A20X20_.32

Open channel 6 to the CONsole device creating a window size 10 x
20 pixels at position 20,20 with a 32 byte keyboard type ahead buffer.

Although the SuperBASIC syntax requires that a file name be supplied as a parameter
to the OPEN statement SuperBASIC will automatically convert any unsuitable data to
the correct form for the OPEN statement. This implies that if required the file name can
be entered without quotes:

OPEN#: 5, "'data__file"
OPEN# b, data__file are equivalent

OPEN (provisional)

comment

R Q\HQ'"“M

OVER screen

OVER selects the type of over printing requued The selected type remains in effect until
the next use of OVER.

syntax: OVER numeric__expression range -1 to 1

where:
O implies print INK on STRIP
1 implies print in INK on transparent STRIP
-1 implies print in INK over previous contents of screen

example: I OVER 1

ii. 10 REMark Shadow Writing
20 PAPER 7 : INK O : OVER 1
30 FORi = O TO 10
40 CURSOR i,i
50 IFi=10 THEN INK 2
60 PRINT ““Shadow’’
70 END FOR i

repetition

PROVISIONAL

NEXT is used to control REPEAT and FOR constructions.

syntax: NEXT identifier

The identifier must match that of the loop which the NEXT is to control

example: 53

10 REMark this loop must repeat forever
10 REPeat infinite__loop

30 PRINT “'still looping”’

40 NEXT infinite__ioop

10 FOR index=1 TO limit
20 INPUT ‘‘data? '/, arraylindex)
30 NEXT index

10 REPeat odd

20 LET number = RND(1,100}

30 IF number/2 = INT{(number DIV 2) THEN NEXT odd
40 PRINT number; '’ is odd"’

50 END REPeat odd

If NEXT is used inside a REPeat-END REPeat construct it will force processing to continue
at the statement folliowing the matching REPeat staternent.

The NEXT statement can be used to repeat the FOR loop with the control variable set
at its next value. If the list of values 1s used or if the range of the control variable has
been exceeded then processing will continue at the statement following the NEXT;
otherwise processing will continue at the statement after the FOR.

NEXT

in REPeat

in FOR

PROVIJIONAL
ON GOTO ¢ compatibility
ON GOSUB

For compatibility with other BASICs, SuperBASIC supports the ON GOTO and ON
GOSUB statements. These statements allow a variable to select from a list of possible
line numbers a line to process i a GOTO or GOSUB statement.

syntax: ON variable GOTO expression *| , expression | *
ON variable GOSUB expression * |, expression | *

example: i. ON x GOTO 10, 20, 30, 40
ii. ON select__variable 1000, 2000, 3000, 4000

comment: SELect can be used to replace these two BASIC comimands

PROVISIGNAL

MODE sets resolution of the screen detfinition and also the number of solid colours
availlable. MODE will clear the entire screen and will reset all all windows and will close
any channels which are using those windows for ¢ 1put

screen

syntax: MODE numeric___expression

where:
0, 256, 8 will select low resolution (8 colour mocte:!
1, 512, 4 will select high resolution {4 colour mocic!

256 and 512 ar the number of pixels across the screen in mode

example: i MODE 256
MODE 4
. MODE O
If the QL 1s being used on a television set then it will not be possible to see the full H12

pixels available in high resolution mode.

MODE

warning

'
PREVISIONA:
NEW SuperBASIC
NEW will clear out the old program and old variables.
syntax: NEW

example: NEW

PROVISIONAL

SuperBASIC LRUN

LRUN will foad a specified Microdrive file which must contain a SuperBASIC program.
When loaded the program will start execution.

syntax: LRUN device

device must be a Microdrive device

example: i. LRUN MDV1_QUILL
ii. LRUN MDV1__game

MERGE

“ROVISINY

Will load a file from the specified device. If the new file contains a line number which
doesn’t appear in the program then the line will be added. If the new file contains a
replacement line for one that already exists then the line will be replaced. All other old
program lines are left undisturbed.

syntax: MERGE device

device must be a Microdrive device

example: i. MERGE MDV__1__overlay__program
i. MERGE MDV__1__new___data

PROVISHINAL

functions and procedures LOCAL

Allows a series of vanables to be defined to be LOCAL to a procedure or a function.
LOCAL data is lost when the procedure or function terminates.

syntax: LOCAL identifier * |, idcnttier '*

example: i. LOCAL a, b, ¢
ii. LOCAL temp__data

PROVISIZMM

LN math functions
LOG

LN will return the natural logarithm of the specified argument. LOG will compute the
logarithm to base 10. There is no upper limit other than the maximum number the
computer can store

syntax: LOG{numeric__expression) range greater than zero
LNG(numeric__expression) range greater than zero

example: i. LOG(20)
ii. LN(3.141592654)

PROVISID!

LIST allows SuperBASIC line or group of lines to be listed on a specific channel or default
channel.

LIST

syntax: line: = | numeric__expression TO numeric__expression
| numeric__expression TO
| TO numeric__expression
| numeric__expression

WwWwN —

LIST channel line

where:

will list from the specified line to the specified line
will list from the specified line to the end

will list from the start to the specified line

will list the specified line

AWN =

If LIST output is directed to a channel opened as a printer channel then this will provide comment
hard copy output. The default will be modified by the USE command

LOAD

comment

PROVISIGRAL

devices

LOAD will load a SuperBASIC program from any QL device. The default device for LOAD
IS

MDV1__
syntax: LOAD identifier
example: i. LOAD “"MDV1_EASEL"”
i. LOAD ARCHIVE
ii. LOAD NET3

iv. LOAD SER1__E

The standard rules for SuperBASIC identifiers and SuperBASIC coercion still apply. It is
not necessary to use the quote symbol in the LOAD statement. Since MDV1___is the
default device it is not necessary to specify it. If the specified Microdrive file is not found
on the specified Microdrive no attempt is made to search other dirves on the system.
To load from any other device the complete device specification must be given.

PROVISIDNAL

strings LEN
LEN will return the length of a string specified as a parameter.
syntax: LEN(string__expression)

example: i. LEN(“"LEN will find the length of this string’’)
ii. LEN(““output__string$)

PROVISIONA!

Starts a SuperBASIC assignment statement. The use of the LET keyword is optona
The assignment may be used for both string and numeric assignments. SuperBASIC wi
automatically convert unsuitable data types to a suitable for wherever possible

LET

syntax: LET variable = expression
example: i LEF @ = il e 2
ii. LET a$ = '"12345"
ii. LET a$ = 6789

iv. b$ = test__data

PROVISIONAL

math functions INT

INT will return the integer part of the argument. The argument must bne in the range
-32767 to 32767.

syntax: INT(numeric__expression) range -32767 to + 32767

example: i. INT(34.657938)

INVERSE

PROVISIONAL

INVERSE will cause all subsequent characters to be output in inverse, i€ PAPER on
INK rather than INK on PAPER. INVERSE will remain in effect until the next use ol
INVERSE.

screen

syntax: INVERSE numeric__expression range 0 to 1
where: 0 - turn inverse off
1 - turn inverse on

example: i. INVERSE O
ii. INVERSE 1

PROVISIONAL

conditions

INKEY$
INKEY$ is a function which returns a single character input from a channel. If no channel

1s specified then the default channel or the channel specified in the last USE command
is used

syntax: INKEY$ (channel)

example: i. PRINT INKEY$
ii. PRINT INKEYS$(3:4)

ﬂvr,c n”
[]
INPUT S 170

INPUT allows data to be entered into a SuperBASIC program directly from the QL keyboard
by the user. SuperBASIC will wait until the specified amount of data has been input before
continuing with the program. Each item of data must be terminated by the enter key.

INPUT will assume the default channel for input and output if no channel specification
is specifically given. If a new default channel (channels) has be assigned with the USE
command then this (these) channels will be used instead.

If input is required into a particular channel the cursor for the window conected to that

channel will appear ¢nd start to flash
syntax. separator: - | |
channel: numeric.. expression
prompt: = | channel | expression___separator

INPUT | prompt || channel lvariable [* |, variable |

example: i. INPUT “Last guess’’ ! guess+ 0, "New guess? ! guess
i. INPUT ““What is your guess?’’; guess
ii. 10 INPUT “‘array size?’’; length
20 DIMension array(length)
10 FOR element = O to fimit-1
20 INPUT “data? *‘;array{element)
30 END FOR element
40 FOR element = 0 TO limit-1
50 PRINT array(element)
60 END FOR element

comment: INPUT will output any expression as part of the prompt and will assume that any variable
that doesn’t form part of an expression requires data top be input, see example 1.

PROVISIINAY

RUN ailows a SuperBASIC program to be started. If a line number is specified in the
RUN command then the program will be started at that point, otherwise the program

will start at the lowest line number. RUN will reset the values of any defined variables
GOTO 1 e b used to start a program without clearing any variables.
syntax: RUN numenc__c inession
example: i RUN
il. RUN 10
iii. RUN 2*20

Although RUN can be used within a program its normal use 1s to slart program execution
by typing it in as a direct command

RUN

comment

PROVISIONAL

SAVE devices
SAVE will save a SuperBASIC program onto any QL device. The default device for SAVE
is

MDV1__
syntax: SAVE device
example: i SAVE MDV1__program__1
ii SAVE test__program

ii. SAVE NET3
iv. SAVE SER1

comment: The standard rules for SuperBASIC identifiers and SuperBASIC coercion still apply. It s
not necessary to use the quote symbol in the SAVE staternent. Also since MDV'1
is the default device it is not necessary to specily it, To SAVE on any other device the
complete device specification must be given

PROVISIONAL

devices ’ SBYTES

SBYTES allows areas of the QL. memory to be saved on a QL device. The default device
for SBYTES is

MDV1__
syntax: SBYTES devices
example: i SAVE MDV1__screen__data
ii. SAVE test__program
ii. SAVE NET3

iv. SAVE SER1

The standard rules for SuperBASIC identifiers and SuperBASIC coercion still apply. His comment
not necessary to use the quote symbol in the SAVE statement. Also since MDV1_

is the default device it is not necessary to specify it, To SAVE on any other device the

complete device specification must be given.

- pROVISIaNA!

E R L Aa BE L5 ¥
math functions

SIN

SIN will compute the sin of the specified argument. The argument must be in the range
-60000 to 60000 and must be specified in radians.

syntax: SiIN{numeric__expression) range -60000 to + 60000

example: i. SIN(3)
ii. SIN(3.141592654/2)

PROVISIONAL

graphics SCALE

SCALE allows the scale factor used by the GRAPHICS procedures to be altered. A SCALE
of "x" implies that a vertical line of length 'x" will fill the vertical axis of the window in
which the line is drawn. A scale of 100 is the default.

syntax: SCALE numeric__expression
example: i. SCALE 0.5
ii. SCALE 10

ili. SCALE 100

SCROLL

PROVISIONAL

screel!

Scrolls the current window up or down. Paper is scrolled in at the top o the bottom
to fill the clear space.

An optional second parameter can be specified to obtain a parl screen scroll

syntax: part: = numeric__expression

where: O - whole screen (default in no parameter)
1 - top excluding the cursor line
2 - bottom excluding the cursor line

SCROLL numeric__expression , part
If the expression evaluates to a positive value then the screen will be scrofled upwards
example: i SCROLL 10 scroll up 10 pixels

ii. SCROLL -70 scroll down 70 pixels
ii. SCROLL 10, 2 scroll the bottom of the 10 pixels

PROVISIONAL

conditions : SELect

) A , END SElLect
SELect allows various courses of action to be taken depending on the value of an variable.
select__variable: = numeric__variable define
select__item. = | expression

| expression TO expression
select__list. = | select__item * |, select__item |*

Allows multiple actions to be selected depending on the value of a select__ variable. long
The select variable is the last item on the logical line. A series of SuperBASIC statements

follows, which is terminated by the next ON statement or by the END SELect statement.

The ON REMAINDER statement allows a catch all which will respond if no other select
conditions are satisfied.

syntax: SElLect ON select__variable
*| |ON select__variable |= select__list
Statements | *
{ON select__variable |= REMAINDER

statements
END SElect
example: i 10 SELect ON error__number
20 ON error__number = 1
30 PRINT “’Divide by zero'’
40 LET error__number = O
40 ON error__number = 2
50 PRINT ‘“’File not found’’
60 LET error__number = O
70 ON error_number = 3 TO 5
70 PRINT ““Microdrive file not found”’
80 LET error__number = O
90 ON error__number = REMAINDER
90 PRINT ““Unkown error”’
110 error__recovery

120 END SElLect

If the select variable is used in the body of the SELect statement then
it must match the select variable given in the select header.

The short form of the SELect statement aliows simple single line selections to be made. short
A sequence of SuperBASIC statements follows on the same logical line as the SELect
statement. If the condition defined in the select statement is satisfied then the sequence

of SuperBASIC statements is processed.

syntax: SELect select___variable = select__list : statement
*| . statement | *

example: i. SELect test__data = 1 TO 10 : PRINT "Answer within range”’
ii. SELect answer = 0.00001 TO 0.00005 : PRINT *’Accuracy OK"’
iii. SElLecta = 1TO 10:PRINT al”in" : = REMAINDER : PRINT a!"out’

The short form of the SELect statement allows ranges to be tested more easily than comment
with an IF statement. Compare example ii. above with the corresponding IF statement.

PROVISIONA!

SQRT math functions

SQRT will computer the square root of the specified argument. The argument must be
greater than zero.

syntax: SQRT(numeric__expression) range greater than zero

example: i. SQRT(3)
i. SQRT{a+2 + b+2)

PROVISIONAL

STOP will terminate execution of a program and will return SuperBASIC to the command
interpreter.

STOP

syntax: STOP

example: i. STOP

PROVISIAN !

STRIP . v

This will set the current strip colour. The strip colour is the background colour which
is used when OVER 1 is selected. Setting PAPER will automatically set the strip colour
to the new PAPER colour.

e STRIP colour

example: 3 —

PROVISIONAL

170

TAB is a function which will return sufficient spaces to move the print position to the
required column. If the print position is greater than the specified column then no action
is taken. TAB must be used from within a PRINT statement. TAB takes account of the
current character size.

syntax: pPOSition: = NUMEric___expression
TAB position
example: i PRINT TAB(30); ““This starts at column 30’

ii. PRINT “‘column O ‘*; TAB(20); ‘‘column 20"

TAB is normally followed by the ; print separator, any other separator would attempt
to space out the output and would nullify the effect of the TAB.

TAB

comment

TAN

PROVISION]

math functions

TAN will compute the tangent of the specified argument. The argument must be in the
range -30000 to 30000 and must be specified in radians.

syntax: TAN({numeric__expression) range 30000 to 30000

example: i. TAN(3)
ii. TAN(3.141592654/2)

PROVISITNAL

debugging o TRACE

The TRACE command turns on and off the SuperBASIC trace option. When trace is

active a list of the line numbers and an indication of the statement within the line is output
on the default screen.

Trace will accept an extra parameter which will output to the trace information to a channel
(which must have been previously opened) this featuie allows program tracing to continue
without intefering with the standard program window

syntax: TRACE | channel | numeric__expression range 0 to 1
example: i TRACE O trace off
i. TRACE1 trace on
ii. TRACE trace__switch
iv. TRACEH4 1 trace on and output trace information

to channel 4

Qa2
UNDER PRDVlevluu

Tumns underline either on or off for subsequent output lines. Uses the current INK colour.

creen

syntax: UNDER numeric__expression range 0 1o 1

example: i UNDER 1
ii. UNDER switch__value

PROVISIONAL

default channels

USE allows the default channels for PRINT, to be defined to the system Various groupings
of function are assumed by the USE command:

group 1: PRINT output
graphics output
window functions (BORDER, WINDOW, CLS, PAN, SCROLL, etc)

group 2: INPUT prompt
group 3: INPUT input
LIST output
syntax: channel: = & numeric__expression range O to 16

USE channel |,channel [l channel |

If one pararneter is specified then groups 1, 2 and 3 are set to the specified channel.
If two paramters are specified then group 1 is set to the first parameter and groups 2
and 3 are set to the second. If three parameters are specified then each group Is set
to the respective channel

example: i USE - @ 15
il. USE print_channel, prompt, Microdrive

USE

SEEE
USR PROVIS! A

USR allows a machine code program to be accessed.

syntax: address: = numeric__expression

USR address

example: i. USR O

= wemes PROVISIONAL

Inlormation avalable shortly

WHEN

WINDOW

b

PROVISI

MNILEE

OK

Allows the user to create a window on the QL display screen. The window s created
without any border.

syntax: X__.0rigin: = NUMEIc__expression

y__0rigin: = numeric___expression

X__SIze: = numeric_._expression

y__Size: = numMeric__expression
WINDOW x__origin, y__.ongin, x__size, y.__size
x__orgin and y__origin are the X and Y coordinates ot the top left hand corner ot the
window. x__size and y_size are the width and depth of the window respectivly
Coordinates are specified using the pixel coordinate system

example: WINDOW 30, 40, 10, 10

PROVISIONAL sirnci=ir-

QL

Concepts

The Concept Reference Guide attempts to describe concepts relating to SuperBASIC and
the QL hardware. Concepts are listed in alphabetical order of the most common term for
that concept. An index is provided which attempts to anticipate any other terms which
may be used.

The concept section of the Reference Guide places each concept in alphabetical order
for the most common wording for that concept, i.e. string comparisons will be found
under S. At the end of the section there is an index that tries to anticipate any other
names that a particular concept may have, e.g. comparisons (string).

Array Literals

Array literals provide a short hand form of initialising an array. The contents of an array
can be specified simply and the array initialised with a single assignment.

Array literals are enclosed in curly brackets the level of nesting indicates the number of
dimension of the final array. Array literals can be used to define string arrays.

example: {0,1,2,3} a one dimensional array
t{o, 12,3}l a 2 x 2 array
{lo,1H2,3lli4,816,711 a 2x2x2 array
“one’’, “two’’} a 2xn array

i. 10 DIMension data (2,2}, answer$(1,3)
20 LET data = {{1,10l4,2}} :
30 let answer$ = {“‘yes’”’, “no”’}

PROVISIONAL

Arrays must be DiIMensioned before they are used when an array is dimensioned the
value of each of its elements 1s set to zero (a zero length string for a a string array). An
array dimension runs from zero up to the specified value. There is no imit on the number
of dmensions which may be defined other than the total memory capacity of the
computer. Data in an array is stored such that the last index defined cycles round most
rapidly:

Array

example: consider array(4, 2)
stored as:

array(0O, 0O)
array(0, 1)
array(O, 2)
array(1, O)
array(1, 1)
array(1, 2}
array(2, O)
array(2, 1}
etc.

The eilement referred to by arrayla, b, o) is equivalent 1o the clement
reterred to by array(alb){c)

character set and keys

To be announced.

PROVISIONAL

Coercion in SuperBASIC is the act of forcing a value to a type which will allow the
requested operation to be performed, i.e. if SuperBASIC is requested to perform a
numeric addition then for the operation to succeed the two operands must themselves

be numerical. SuperBASIC will attempt to convert non numerical operands to floating
point operands and then will continue.

Coercion between data types will be performed when necessary and when SuperBASIC
can deduce the necessary types and can perform the conversion.

example i. LET answer = 1" + 2" + “3" is valid SuperBASIC
ii. LET answer = 3 + "'2" is valid SuperBASIC
iii. LET answer = “3.141592654" is valid SuperBASIC
iv. LET answer = ""PI"’ is NOT VALID
v. LET answer$ = 32 + 156" is valid

a=b+c¢c no conversion is necessary before performing the addition, conversion

is not necessary before assigning the result to a.

a% = b + ¢ no conversion is necessary before performing the addition but the
result is rounded to an integer value before assigning.

a$ = b$ + ¢$ bs$ and c$ are converted to floating point, if possible, before being
added together. The result is converted 10 string before assigning.

Coercion

PROVISIGNAL

In general on the QL colours may be specified at three levels. In its most general form a
""colour specification’’ consists of a background or main colour {(which will hormally be
referred to as ‘colour’), a ‘contrast’ colour and a ‘stipple” pattern. A colour specification
can therefore have up to THREE arguments although the procedure call mechanism
allows various parameters to be assumed.

Colour

Single colour: = composite colour
The single argument specifies the three parts of the colour specification. The background
colour is contained in the bottom three bits of the colour byte. The next three bils contain

the exclusive or (XOR) of the main colour and the contrast colour. The top two bils
indicate the stipple pattern.

This will be the general case, by specifying only the bottom three bits, (i.e. the required
colour) no stipple will be requested and a single solid colour will be tised for display
Double colour: = background, contrast

The "‘colour’" is a stipple of the two specified colours. The default checkerboard stupple: i
assumed (stipple 4)

Triple colour: = background, contrast, stipple

Background and contrast colours and stipple are each defined separately

Colours The codes for colour selection depend on the screen mode in use:

Code 256 pixel mode 512 pixel mode

0 black black

1 blue black

2 red red

3 magenta red

4 green green

5 cyan g green

6 vellow white

7 white white

Stipples “'1111"" implies that a four pixel square is filled with contrast colour.

example i. PAPER 255 :CLS

i. PAPER 2,4 : CLS

Warning Stipples should not be used on a television set fed by a UHF signal.

0
1
HORIZONTAL LINE
2
VERTICAL LINE
2
CHECKERBOARD (defauit)

PROVISIONAL

The QL has two serial ports (labelled SER1 and SER2) for connecting it to equipment

which uses serial communications obeying EIA standard RS-232-C or a compatible
standard.

Communications -
RS-232-C

Unfortunately the RS-232-C "'standard’’ shows itself in a large number of different forms
on different equipment, and it can be a tedious job, even for an expert, to connect
together for the first time two pieces of supposedly standard RS-232-C equipment. This
section attempts to cover most of the basic problems you will encounter

The RS-232-C standard refers to two types of equipment:

Data Terminal Equipment (DTE)
Data Communication Equipment {DCE)

The main difference between these two types is that the Transmit data {TxD) and
Receive Data (RxD) are switched round between them, i.e.

The TxD line is output for Data Terminal Equipment
The RxD line is input for DTE and output for DCE

Serial port 1 (SER1) on the QL is configured as DCE while serial port 2 {SER2) is
configured as DTE. This means that it should be possible to connect at least one of the
serial ports to a given device simply by using whichever port is wired the correct way.
The pin-out for the serial ports is given below. A cable for connecting the QL to a
standard 25-way ‘D"’ type connector is available from Sinclair (see the QL software and
peripherals catalogue).

SER1 SER2
pin function pin function
1 GND signal ground 1 GND signal ground
2 SiEde) input 2B output
3 RxD output 3 RxD input
4 DTR ready input 4 DTR ready output
5 S ready output 5 CMS ready input
6 + 12V 6 1 12V
TxD Transmit Data
RxD Receive Data
DTR Data Terminal Ready
@GNS Clear to send

Once the equipment has been connected to the correct port the Baud Rate (transmission
speed) must be set so that they are the same for both the QL and the connected
equipment. The QL can be set to operate at

75
300
600
1200
2400
4800
9600
19200 (transmit only) baud

The QL baud rate is set by the BAUD command (see reference guide - BAUD).

The parity must be set to match the parity expected by the connected equipment. This
can be set up when the serial channel is opened (see reference guide - OPEN}.

It is not necessary to set the number of stop bits. The QL will always receive data with
any number of stop bits and will always transmit at least two stop bits.

Communications on the QL is "“full duplex’’, that is both transmit and receive can operate
concurrently.

PROVISIONAL

It may be necessary to connect correctly the “‘handshake’” signals. These signals allow

the two QL and the connected equipment to monitor and control each others =
communication. The full RS-23 2 standard allows for nineteen signals, most of which are

ignored by most equipment. The QL uses two control signals:

CTS - Clear To Send
DTR - Data Terminal Ready

CTS is a signal from DCE to DTE which indicates if data can be output on the TxD line.
DTR is a signal frem DTE to DCE which indicates if data may be output on the RxD line

Some pieces of equipment will function correctly without any use of handshake signals
The QL can ignore handshaking on transmission or not, depending on the parameters ir
the ""OPEN"" command (see reference guide - OPEN). Hower, the QL will not recen
correctly without the use of CTS {on port 1) and DTR (on port 2).

if additional control signals are required by the equipment being connected to the OL,
they must be wired up, etc.

PROVISIZHAL

These are whole numbers in the range -32767 to +32767. Variables are assumed to
be integer if the variable name is suffixed with a percent (%).

Floating point numbers in the range —~10 '® to 10°"®. The number of significant
decimal digits is £10 °™ to 10%'® This is the default type in SuperBASIC.

A sequence of characters up to 32768 characters long (see character set).

Data Types

Integer

Floating Point

String Literals

Devices

define

CON_ wXhaxXy__k

SCR__wXhaxXy

SERnp

NETnn

 PROVISIONA!

All 1/0 on the QL is to or from a logical file.

When a channel is opened certain basic in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>